Objective
The purpose of this study was to investigate the role of Plasminogen (Plg) in stem cell-mediated cardiac repair and regeneration after myocardial infarction (MI)
Background
MI induces irreversible tissue damage, eventually leading to heart failure. Bone marrow (BM)-derived stem cells promote tissue repair and regeneration after MI. Thrombolytic treatment with Plg activators significantly improves the clinical outcome in MI by restoring cardiac perfusion. However, the role of Plg in stem cell-mediated cardiac repair remains unclear.
Methods
MI was induced in Plg deficient (Plg−/−) and wild-type (Plg+/+) mice by ligation of left anterior descending coronary artery (LAD). Stem cells were visualized by in vivo tracking of GFP-expressing BM cells after BM transplantation. Cardiac function, stem cell homing, signaling pathways downstream of Plg were examined.
Results
G-CSF, a stem cell mobilizer, significantly promoted BM-derived stem cells (GFP+c-kit+ cells) recruitment into infarcted heart and stem cell-meidated cardiac repair in Plg+/+ mice. However, Plg deficiency markedly inhibited stem cell homing and cardiac repair, suggesting that Plg is critical for stem cell-mediated cardiac repair. Moreover, Plg regulated CXCR4 expression in stem cells in vivo and in vitro through MMP-9. Lentiviral reconstitution of CXCR4 expression in BM cells rescued stem cell homing to the infarcted heart in Plg-deficient mice, indicating that a critical role of CXCR4 in Plg-mediated stem cell homing after MI.
Conclusions
These findings have identified a novel role of Plg in stem cell-mediated cardiac repair after MI. Thus, targeting Plg may offer a new therapeutic strategy for stem cell-mediated cardiac repair after MI.