Aim: GPR119 is a G protein-coupled receptor (GPCR) that is highly expressed in pancreatic β-cells and intestinal L-cells and facilitates glucose-stimulated insulin secretion (GSIS). GPR119 may represent a novel target for the treatment of metabolic disorders. Here, we sought to identify novel small-molecule GPR119 agonists. Methods: A cell-based high-throughput screening assay was established using HEK293 cells stably expressing GPR119 and pCRE-luc reporter plasmid (HEK293/GPR119/pCRE-luc). A compound library composed of 1440 compounds was screened. Mouse β-cell line MIN-6 and isolated mouse islets were used to evaluate the effects of candidate compounds on GSIS in vitro. Results: Three compounds with novel structures (ZSY-04, -06, and -13) were found to activate GPR119-mediated signaling and to induce GPR119 desensitization. The EC 50 values of ZSY-04, -06, and -13 in stimulating intracellular cAMP accumulation in HEK293/ GPR119 cells were 2.758, 3.046, and 0.778 µmol/L, respectively. Furthermore, all three compounds displayed high selectivity for GPR119, and did not activate other 9 GPCRs tested. Moreover, all three compounds significantly increased GSIS in both MIN-6 mouse β-cells and isolated mouse islets at concentration of 10 µmol/L. Conclusion: Three novel small-molecule GPR119 agonists (ZSY-04, -06, and -13) with high receptor selectivity and capacity to induce GSIS in vitro were discovered. These compounds are potential candidates to be structurally optimized into drugs for the treatment of type 2 diabetes.