Single-cell RNA sequencing (scRNA-seq) determines RNA expression at single-cell resolution. It provides a powerful tool for studying immunity, regulation, and other life activities of cells. However, due to the limitations of the sequencing technique, the scRNA-seq data are represented with sparsity, which contains missing gene values, i.e., zero values, called dropout. Therefore, it is necessary to impute missing values before analyzing scRNA-seq data. However, existing imputation computation methods often only focus on the identification of technical zeros or imputing all zeros based on cell similarity. This study proposes a new method (SFAG) to reconstruct the gene expression relationship matrix by using graph regularization technology to preserve the high-dimensional manifold information of the data, and to mine the relationship between genes and cells in the data, and then uses a method of averaging the clustering results to fill in the identified technical zeros. Experimental results show that SFAG can help improve downstream analysis and reconstruct cell trajectory.