The well known thermodynamic instability of Al and Ga monohalides is caused by the favored disproportionation process to the bulk metal and the trihalides. During this highly complex process, a number of metalloid clusters that are intermediates on the way to the metal have been trapped. Therefore, all observations in the field of metalloid Al/Ga clusters have been traced to this favored disproportionation process. The failure to form phosphanide-substituted Al clusters, in contrast to the generation of similar Ga clusters and analogous Al amide clusters, was the starting point of this contribution. For aluminum(I) phosphanides, there exists a different decomposition route in which the salt-like bulk material AlP and not Al metal is the final product. The synthesis of two molecular "AlP" intermediate species, together with supporting DFT calculations, provide plausible arguments for this decomposition route, which is thermodynamically favored for many AlR/GaR species and which, surprisingly, has not been discussed before.