Neuropathic pain, which is characterized by hyperalgesia, allodynia and spontaneous pain, is one of the most painful symptoms that can be experienced in the clinic. It often occurs as a result of injury to the peripheral nerves, dorsal root ganglion (DRG), spinal cord or brain. The renin-angiotensin system (RAS) plays an important role in nociception. As an essential component of the RAS, the angiotensin (Ang)-(1-7)/Mas axis may be involved in antinociception. The aim of the present study was to explore the expression pattern of Mas in DRG neurons following chronic nerve injury and examine the effects of Mas inhibition and activation on neuropathic pain in a chronic constriction injury (CCI) rat model. The results showed, that compared with the sham group, CCI caused a time-dependent induction of Mas expression at both the mRNA and the protein levels in DRG neurons. Consistent with the results, isolated DRG neurons showed a time-dependent increase in Ang-(1-7) binding on the cell membrane following the CCI surgery, but not the sham surgery. Compared with the sham control groups, CCI significantly decreased the paw withdrawal latency and threshold, and this was markedly improved and aggravated by intrathecal injection of the selective Mas agonist Ang-(1-7) and the selective Mas inhibitor D-Pro7-Ang-(1-7), respectively. In conclusion, this study has provided the first evidence, to the best of our knowledge, that the Mas expression in DRG neurons is time-dependently induced by chronic nerve injury and that the intrathecal activation and inhibition of Mas can improve and aggravate CCI-induced neuropathic pain, respectively. This study has provided novel insights into the pathophysiological process of neuropathic pain and suggests that the Ang-(1-7)/Mas axis could be an effective therapeutic target for neuropathic pain, warranting further study.