In this paper, an overview of the calculation of synthetic seismograms using the Gaussian beam method is presented accompanied by some representative applications and new extensions of the method. Since caustics are a frequent occurrence in seismic wave propagation, modifications to ray theory are often necessary. In the Gaussian beam method, a summation of paraxial Gaussian beams is used to describe the propagation of high-frequency wave fields in smoothly varying inhomogeneous media. Since the beam components are always nonsingular, the method provides stable results over a range of beam parameters. The method has been shown, however, to perform better for some problems when different combinations of beam parameters are used. Nonetheless, with a better understanding of the method as well as new extensions, the summation of Gaussian beams will continue to be a useful tool for the modeling of high-frequency seismic waves in heterogeneous media.