We investigate the magnetization dynamics in nanomagnet vertices often found in artificial spin ices. Our analysis involves creating a simplified model that depicts edge magnetization using magnetic charges. We utilize the model to explore the energy landscape, its associated curvatures, and the fundamental modes. Our study uncovers specific magnonic regimes and transitions between magnetization states, marked by zero-modes, which can be understood within the framework of Landau theory. To verify our model, we compare it with micromagnetic simulations, demonstrating a noteworthy agreement.