2016
DOI: 10.1007/s00034-016-0244-4
|View full text |Cite
|
Sign up to set email alerts
|

Gain-Constrained Extended Kalman Filtering with Stochastic Nonlinearities and Randomly Occurring Measurement Delays

Abstract: In this paper, the gain-constrained extended Kalman filtering problem is studied for discrete time-varying nonlinear system with stochastic nonlinearities and randomly occurring measurement delays. Both deterministic and stochastic nonlinearities are simultaneously present in the model, where the stochastic nonlinearities are described by first moment and can encompass several classes of well-studied stochastic nonlinear functions. A diagonal matrix composed of mutually independent Bernoulli random variables i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2017
2017
2023
2023

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 31 publications
0
1
0
Order By: Relevance
“…Hence, it is necessary to deal with the stochastic nonlinear functions to improve the accuracy of system state estimation. To mention but a few, in [24], a finite-horizon recursive filter was designed for discrete-time-varying nonlinear system with stochastic nonlinearities and randomly occurring measurement delays which made the filtering error minimum at each sampling time. The probability-constrained filtering problem was investigated in [25] for a class of time-varying nonlinear stochastic systems subject to estimation error variance constraint and a new filter was constructed to guarantee a minimized upper-bound on the estimation error variance.…”
Section: Introductionmentioning
confidence: 99%
“…Hence, it is necessary to deal with the stochastic nonlinear functions to improve the accuracy of system state estimation. To mention but a few, in [24], a finite-horizon recursive filter was designed for discrete-time-varying nonlinear system with stochastic nonlinearities and randomly occurring measurement delays which made the filtering error minimum at each sampling time. The probability-constrained filtering problem was investigated in [25] for a class of time-varying nonlinear stochastic systems subject to estimation error variance constraint and a new filter was constructed to guarantee a minimized upper-bound on the estimation error variance.…”
Section: Introductionmentioning
confidence: 99%