Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A compact (0.35 λ0× 0.35 λ0 where λ0 is free space wavelength at the lower resonance frequency 3.50 GHz) bio-inspired tulip flower-shaped antenna (TFSA) is proposed. A double negative (DNG) metamaterial complementary split ring resonator (CSRR) is introduced near the feed in the hybrid triangular-circular patch which inserts a notch-band (4.20-4.38 GHz) in the wide bandwidth (3.15-7.05 GHz) and makes the antenna response dual-band. Consequently, this results in in-band interference reduction in 5G-Sub-6 GHz applications. A slotted FSS is placed at a distance of 28.507 mm beneath the monopole-reduced ground of the antenna to enhance the reduced gain from 4.39 dBi to 7.22 dBi. A further gain is improved to 12.84 dBi by placing a full copper surface (0.35 λ0× 0.35 λ0) as the reflector layer is placed below FSS at 1.6 mm. Finally, prototyped TFSA with FSS and reflector model achieve a dual bands reflection coefficient response (3.15-4.20 GHz): n77/n78, and (4.38-7.03 GHz): n46/n47/n96/n102/n79. The antenna reflection coefficient is tested using Keysight 14 GHz FieldFox Microwave Analyzer N9916A, and radiation patterns in the E-plane and H-plane are measured using an 18 GHz anechoic chamber. The comparison of simulated results with measured results is found an excellent match in bandwidth and with shapes of gain radiation patterns. The reflector and FSS jointly make the radiation pattern strong in the E-plane above the TFSA radiator. The antenna is well suited for n77/n78 (3.30-4.20 GHz), n79(4.40-4.99 GHz), n46 (5150-5925MHz), n47 (5855 – 5925MHz), n96/n102 (5925-6425MHz), 5.8 GHz HiperLAN, WiMAX 3.5GHz applications. An electrical equivalent circuit model of the proposed TFSA antenna is presented and validated using ADS software.
A compact (0.35 λ0× 0.35 λ0 where λ0 is free space wavelength at the lower resonance frequency 3.50 GHz) bio-inspired tulip flower-shaped antenna (TFSA) is proposed. A double negative (DNG) metamaterial complementary split ring resonator (CSRR) is introduced near the feed in the hybrid triangular-circular patch which inserts a notch-band (4.20-4.38 GHz) in the wide bandwidth (3.15-7.05 GHz) and makes the antenna response dual-band. Consequently, this results in in-band interference reduction in 5G-Sub-6 GHz applications. A slotted FSS is placed at a distance of 28.507 mm beneath the monopole-reduced ground of the antenna to enhance the reduced gain from 4.39 dBi to 7.22 dBi. A further gain is improved to 12.84 dBi by placing a full copper surface (0.35 λ0× 0.35 λ0) as the reflector layer is placed below FSS at 1.6 mm. Finally, prototyped TFSA with FSS and reflector model achieve a dual bands reflection coefficient response (3.15-4.20 GHz): n77/n78, and (4.38-7.03 GHz): n46/n47/n96/n102/n79. The antenna reflection coefficient is tested using Keysight 14 GHz FieldFox Microwave Analyzer N9916A, and radiation patterns in the E-plane and H-plane are measured using an 18 GHz anechoic chamber. The comparison of simulated results with measured results is found an excellent match in bandwidth and with shapes of gain radiation patterns. The reflector and FSS jointly make the radiation pattern strong in the E-plane above the TFSA radiator. The antenna is well suited for n77/n78 (3.30-4.20 GHz), n79(4.40-4.99 GHz), n46 (5150-5925MHz), n47 (5855 – 5925MHz), n96/n102 (5925-6425MHz), 5.8 GHz HiperLAN, WiMAX 3.5GHz applications. An electrical equivalent circuit model of the proposed TFSA antenna is presented and validated using ADS software.
This study introduces a novel antenna based on the binary operation of a modified circular patch in conjunction with the Koch fractal. The antenna is intended for applications in the sub-6 GHz band, partial C-band, and X-band. The low-cost antenna is fabricated on a 1.6-mm-thick FR-4 substrate. A frequency-selective surface (FSS) is used to overcome the decreased values of the gain and bandwidth due to the fractal operations. The introduced split ring resonator (SRR) and the antenna substrate dimension reduction reduce the bandwidth and antenna gain. The air gap between the FSS and the antenna not only enhances the antenna gain but also controls the frequency tuning at the design frequency. The antenna size is miniaturized to 36.67%. A monopole antenna ground loaded with an SRR results in improved closest tuning (3.44 GHz) near the design frequency. The antenna achieves a peak gain of 9.37 dBi in this band. The FSS-based antenna results in a 4.65 dBi improvement in the gain value with the FSS. The measured and simulated plots exhibit an excellent match with each other in all three frequency bands at 2.96–4.72 GHz. These bands cover Wi-MAX (3.5 GHz), sub-6 GHz n77 (3300–3800 MHz), n78 (3300–4200 MHz), and approximately n79 (4400–4990 MHz), in addition to C-band applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.