Synaptic scaling is a form of homeostatic plasticity that stabilizes neuronal firing in response to changes in synapse number and strength. Scaling up in response to action-potential blockade is accomplished through increased synaptic accumulation of GluA2-containing AMPA receptors (AMPAR), but the receptor trafficking steps that drive this process remain largely obscure. Here, we show that the AMPAR-binding protein glutamate receptor-interacting protein-1 (GRIP1) is essential for regulated synaptic AMPAR accumulation during scaling up. Synaptic abundance of GRIP1 was enhanced by activity deprivation, directly increasing synaptic GRIP1 abundance through overexpression increased the amplitude of AMPA miniature excitatory postsynaptic currents (mEPSCs), and shRNA-mediated GRIP1 knockdown prevented scaling up of AMPA mEPSCs. Furthermore, knockdown and replace experiments targeting either GRIP1 or GluA2 revealed that scaling up requires the interaction between GRIP1 and GluA2. Finally, GRIP1 synaptic accumulation during scaling up did not require GluA2 binding. Taken together, our data support a model in which activity-dependent trafficking of GRIP1 to synaptic sites drives the forward trafficking and enhanced synaptic accumulation of GluA2-containing AMPAR during synaptic scaling up.P roper development of neuronal circuits, as well as efficient information storage during learning and memory, are thought to depend upon the presence of homeostatic mechanisms that stabilize neuronal excitability (1-3). One such mechanism is synaptic scaling, which compensates for perturbations in average firing by scaling up or down the postsynaptic strength of all of a neuron's excitatory synapses (4). Synaptic scaling is a cell-autonomous process in which neurons detect changes in their own firing through a set of calcium-dependent sensors that then regulate receptor trafficking to increase or decrease the accumulation of AMPA receptors (AMPAR) at synaptic sites and thus increase or decrease synaptic strength (4-6). Despite great recent interest, the AMPA receptor-trafficking events that underlie synaptic scaling remain largely obscure. Defects in synaptic scaling have been postulated to contribute to disorders as diverse as Alzheimer's disease (7) and epilepsy (8), so illuminating the underlying AMPAR trafficking steps could shed light into the genesis of a wide range of neurological disorders.Most neocortical AMPAR are heteromeric receptors composed of both GluA1 and GluA2 subunits, which have unique phosphorylation sites and interact with distinct trafficking proteins (9). During synaptic scaling up in response to action potential blockade, synaptic strength is increased through enhanced synaptic accumulation of GluA1 and GluA2-containing AMPAR (5, 10-13) and requires the C-terminal domain of the GluA2 subunit (12), but which subunit-specific interactions underlie synaptic scaling remain controversial (12,14). Several trafficking proteins are known to interact with the GluA2, but not the GluA1, C-tail, including glutamate recepto...