previous studies of Brain computer interfaces (Bci) based on scalp electroencephalography (eeG) have demonstrated the feasibility of decoding kinematics for lower limb movements during walking. in this computational study, we investigated offline decoding analysis with different models and conditions to assess how they influence the performance and stability of the decoder. Specifically, we conducted three computational decoding experiments that investigated decoding accuracy: (1) based on delta band time-domain features, (2) when downsampling data, (3) of different frequency band features. In each experiment, eight different decoder algorithms were compared including the current stateof-the-art. Different tap sizes (sample window sizes) were also evaluated for a real-time applicability assessment. A feature of importance analysis was conducted to ascertain which features were most relevant for decoding; moreover, the stability to perturbations was assessed to quantify the robustness of the methods. Results indicated that generally the Gated Recurrent Unit (GRU) and Quasi Recurrent neural network (QRnn) outperformed other methods in terms of decoding accuracy and stability. previous state-of-the-art Unscented Kalman filter (UKf) still outperformed other decoders when using smaller tap sizes, with fast convergence in performance, but occurred at a cost to noise vulnerability. Downsampling and the inclusion of other frequency band features yielded overall improvement in performance. the results suggest that neural network-based decoders with downsampling or a wide range of frequency band features could not only improve decoder performance but also robustness with applications for stable use of Bcis.Brain Computer Interfaces (BCI) record, infer and translate different parameters associated with movement from different types of brain signals to provide volitional control to prosthetic limbs, exoskeletons, computers, and even digital avatars. The part of the BCI which deciphers the user's motor intent from recorded brain activity is typically referred to as a neural decoder. Building high-performance neural decoders is important in four different aspects: (1) usability, (2) salient feature identification and quantification, (3) understanding of the underlying neural representations 1 , and as (4) a potential metric of neural function. First, BCI neural decoders based on scalp electroencephalography (EEG) are being designed for assistive and therapeutical applications for patients with motor disabilities in order to promote plasticity and facilitate rehabilitation 2,3 . Thus, higher accuracy in decoding performance determines the usability of the system 4 . Second, many neural features (e.g., time and frequency domain features, channel locations, channel and source domain features, to name a few 5,6 ) are likely to contain varying information about motor intent and thus are candidates for decoding human movement. However, it is often difficult to identify and quantify important features given the complexities of perfor...