“…This rapidly growing sample of galaxies with quality imaging has sparkled renovated interests in the development of codes for the measurement of galaxy structural parameters and galaxy morphological classification that are accurate, time efficient, and require very few input from the user. These codes involve the use of non-parametric fitting (CAS Conselice, 2003, GINI Lotz et al, 2004, MORFOMETRYKA Ferrari et al, 2015), parametric fitting (GIM2D Simard et al, 2002, BUDDA de Souza et al, 2004, GASP2D Méndez-Abreu et al, 2008, PYMORPH Vikram et al, 2010, GALAPAGOS Häußler et al, 2011Häußler et al, 2013, IMFIT Erwin, 2015, GALIGHT Ding et al, 2021, galapagos-2 Häußler et al, 2022 or machine learning methodologies ( DEEPLEGATO Tuccillo et al, 2018, GAMORNET Ghosh et al, 2020, GALNETS Li et al, 2022).…”