Analysis of bioorganic materials by infrared spectroscopy (FT-IR) is frequently limited due to overlapping of diagnostic bands from the various components, which poses a fundamental problem to this analytical technique. The distinction of oxidized di- and triterpenes, for example, is hindered by the superposition of similar absorption bands of carbonyl functional groups summing up to a broad, nondistinctive signal. This study presents a technique for selective fluorination of various carboxylic acids by exposure to gaseous sulfur tetrafluoride. The derivatization treatment leads to characteristic band shifts, allowing the separation of otherwise overlapping bands. Accordingly, the IR bands of primary acids, α,β-unsaturated acids, tertiary acids, peroxy acids, esters, ketones, and α,β-unsaturated ketones are split into distinct absorption bands. The capability of this method is demonstrated on the example of natural resins and their ingredients, which are commonly known to be susceptible to oxidation at ambient conditions. The derivatization method enables one to identify various carbonyl containing functional groups by infrared spectroscopy, even in complex mixtures of terpenes. It unveils previously hidden degradation reactions running in terpenes and natural resins exposed to artificial aging by irradiation with light. New insight is presented on the individual reaction pathways of the terpenes hydroxydammarenone and abietic acid as well as of natural resin varnishes made from dammar and colophony.