Alzheimer’s disease (AD) is the most common cause of dementia and is characterized by the deposition of extracellular aggregates of amyloid-β (Aβ), the formation of intraneuronal tau neurofibrillary tangles and microglial activation-mediated neuroinflammation. One of the key molecules involved in microglial activation is galectin-3 (Gal-3). In recent years, extensive studies have dissected the mechanisms by which Gal-3 modulates microglial activation, impacting Aβ deposition, in both animal models and human studies. In this review article, we focus on the emerging role of Gal-3 in biology and pathobiology, including its origin, its functions in regulating microglial activation and neuroinflammation, and its emergence as a biomarker in AD and other neurodegenerative diseases. These aspects are important to elucidate the involvement of Gal-3 in AD pathogenesis and may provide novel insights into the use of Gal-3 for AD diagnosis and therapy.