Insect herbivory imposes a strong selection pressure on plants. As a result, plants have evolved a wide array of defences, including resistance traits that help them reduce the negative impact of herbivores. Along one axis of variation, these traits can be divided into direct resistance (physical and chemical defences) and indirect resistance (the recruitment of natural enemies of the herbivore via extrafloral nectar and other incentives). Along a second axis of variation, resistance can be split into constitutive resistance, which is always present, and induced resistance, which is expressed more strongly following damage to plant tissues. Interestingly, the strength and efficacy of all of constitutive-direct, constitutive-indirect, induceddirect, and induced-indirect resistance can vary with plant age and ontological stage. Here, we examine the effect of plant age on an induced-indirect resistance trait, the deployment of extrafloral nectaries (EFNs) to attract pugnacious ants, in a short-lived annual, broad bean (Vicia faba L.). We demonstrate that in severely damaged plants, the induction of EFNs is greater in older plants (5-6 weeks) than in younger plants (2-4 weeks); however, in more moderately damaged plants, the induction of EFNs is unaffected by plant age. This suggests the hypothesis that a plant's ability to induce extrafloral nectar, and therefore recruit more ant ''bodyguards,'' may be related to the interaction of plant age and severity of damage.