Gaucher disease, an autosomal recessively inherited lysosomal storage disorder, results from biallelic mutations in the GBA1 gene resulting in deficient activity of the enzyme glucocerebrosidase. In Gaucher disease, the reduced levels and activity of glucocerebrosidase lead to a disparity in the rates of formation and breakdown of glucocerebroside and glucosylsphingosine, resulting in the accumulation of these lipid substrates in the lysosome. This gives rise to the development of Gaucher cells, engorged macrophages with a characteristic wrinkled tissue paper appearance. There are both non-neuronopathic (type 1) and neuronopathic (types 2 and 3) forms of Gaucher disease, associated with varying degrees of severity. The visceral and hematologic manifestations of Gaucher disease respond well to both enzyme replacement therapy and substrate reduction therapy. However, these therapies do not improve the neuronopathic manifestations, as they cannot cross the blood–brain barrier. There is now an established precedent for treating lysosomal storage disorders with gene therapy strategies, as many have the potential to cross into the brain. The range of the gene therapies being employed is broad, but this review aimed to discuss the progress, advances, and challenges in developing viral gene therapy as a treatment for Gaucher disease.