With the growth of cloud computing, many businesses, both small and large, are opting to use cloud services compelled by a great cost savings potential. This is especially true of public cloud computing which allows for quick, dynamic scalability without many overhead or long-term commitments. However, one of the largest dissuasions from using cloud services comes from the inherent and unknown danger of a shared platform such as the hypervisor. An attacker can attack a virtual machine (VM) and then go on to compromise the hypervisor. If successful, then all virtual machines on that hypervisor can become compromised. This is the problem of negative externalities, where the security of one player affects the security of another. This work shows that there are multiple Nash equilibria for the public cloud security game. It also demonstrates that we can allow the players' Nash equilibrium profile to not be dependent on the probability that the hypervisor is compromised, reducing the factor externality plays in calculating the equilibrium. Finally, by using our allocation method, the negative externality imposed onto other players can be brought to a minimum compared to other common VM allocation methods.