The lifetime of underwater sensor networks (USNs) can be prolonged significantly thanks to wireless power transfer technology. In this paper, we first proposed a Shortest Path Partial Charging based on Charging Curve Scheme (SPBS) to increase the survival rate of nodes in 3D underwater networks, and then we proposed a concept of secondary charging stations for mobile charging ships to reduce the traveling cost and improve charging efficiency. We first use k-means clustering algorithm to divide our network with k clusters, and then we place our secondary stations at k clustering centers, in this way, mobile charging ships can be charged at secondary stations quickly. Based on secondary stations, we proposed Hamilton Charging Scheme (HCS) using the Hamilton ring, and then we proposed a temporal and spatial collaborative charging algorithm (mCS-TS) for USNs with multiple mobile charging ships and secondary charging stations, which also takes the cluster factor and deadline time into consideration. Simulation results show the effectiveness of our proposed algorithms. INDEX TERMS Underwater sensor networks, survival rate, SPBS, secondary charging stations, mobile charging ships, cluster factor.