The use of orthogonal signaling schemes such as time-, frequency-, or code-division multiplexing (T-, F-, CDM) in multi-user systems allows for power-efficient simple receivers. It is shown in this paper that by using orthogonal signaling on frequency selective fading channels, the cooperative Nash bargaining (NB)-based precoding games for multi-user systems, which aim at maximizing the information rates of all users, are simplified to the corresponding cooperative resource allocation games. The latter provides additional practically desired simplifications to transmitter design and significantly reduces the overhead during user cooperation. The complexity of the corresponding precoding/resource allocation games, however, depends on the constraints imposed on the users. If only spectral mask constraints are present, the corresponding cooperative NB problem can be formulated as a convex optimization problem and solved efficiently in a distributed manner using dual decomposition based algorithm.However, the NB problem is non-convex if total power constraints are also imposed on the users.In this case, the complexity associate with finding the NB solution is unacceptably high. Therefore, the multi-user systems are categorized into bandwidth-and power-dominant based on a bottleneck resource, and different manners of cooperation are developed for each type of systems for the case of two-users.Such classification guarantees that the solution obtained in each case is Pareto-optimal and actually can be identical to the optimal solution, while the complexity is significantly reduced. Simulation results demonstrate the efficiency of the proposed cooperative precoding/resource allocation strategies and the reduced complexity of the proposed algorithms.