The domain of gamma-ray imaging necessitates technological advancements to surmount the challenge of energy-selective imaging. Conventional systems are constrained in their dynamic focus on specific energy ranges, a capability imperative for differentiating gamma-ray emissions from diverse sources. This investigation introduces an innovative imaging system predicated on the detection of recoil electrons, addressing the demand for adjustable energy selectivity. Our methodology encompasses the design of a gamma-ray imaging system that leverages recoil electron detection to execute energy-selective imaging. The system’s efficacy was investigated experimentally, with emphasis on the adaptability of the energy selection window. The experimental outcomes underscore the system’s adeptness at modulating the energy selection window, adeptly discriminating gamma rays across a stipulated energy spectrum. The results corroborate the system’s adaptability, with an adjustable energy resolution that coincides with theoretical projections and satisfies the established criteria. This study affirms the viability and merits of utilizing recoil electrons for tunable energy-selective gamma-ray imaging. The system’s conceptualization and empirical validation represent a notable progress in gamma-ray imaging technology, with prospective applications extending from medical imaging to astrophysics. This research sets a solid foundation for subsequent inquiries and advancements in this domain.