2024
DOI: 10.3390/math12101439
|View full text |Cite
|
Sign up to set email alerts
|

GAN-Based Anomaly Detection Tailored for Classifiers

Ľubomír Králik,
Martin Kontšek,
Ondrej Škvarek
et al.

Abstract: Pattern recognition systems always misclassify anomalies, which can be dangerous for uninformed users. Therefore, anomalies must be filtered out from each classification. The main challenge for the anomaly filter design is the huge number of possible anomaly samples compared with the number of samples in the training set. Tailoring the filter for the given classifier is just the first step in this reduction. Paper tests the hypothesis that the filter trained in avoiding “near” anomalies will also refuse the “f… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 56 publications
0
0
0
Order By: Relevance