Heart diseases such as cardiovascular and myocardial infarction are the foremost reasons of death in the world. The timely, accurate, and effective prediction of heart diseases is crucial for saving lives. Electrocardiography (ECG) is a primary non-invasive method to identify cardiac abnormalities. However, manual interpretation of ECG recordings for heart disease diagnosis is a time-consuming and inaccurate process. For the accurate and efficient detection of heart diseases from the 12-lead ECG dataset, we have proposed a hybrid residual/inception-based deeper model (HRIDM). In this study, we have utilized ECG datasets from various sources, which are multi-institutional large ECG datasets. The proposed model is trained on 12-lead ECG data from over 10,000 patients. We have compared the proposed model with several state-of-the-art (SOTA) models, such as LeNet-5, AlexNet, VGG-16, ResNet-50, Inception, and LSTM, on the same training and test datasets. To show the effectiveness of the computational efficiency of the proposed model, we have only trained over 20 epochs without GPU support and we achieved an accuracy of 50.87% on the test dataset for 27 categories of heart abnormalities. We found that our proposed model outperformed the previous studies which participated in the official PhysioNet/CinC Challenge 2020 and achieved fourth place as compared with the 41 official ranking teams. The result of this study indicates that the proposed model is an implying new method for predicting heart diseases using 12-lead ECGs.