GAN-Based Semi-Supervised Training of LSTM Nets for Intention Recognition in Cooperative Tasks
Matija Mavsar,
Jun Morimoto,
Aleš Ude
Abstract:The accumulation of a sufficient amount of data for training deep neural networks is a major hindrance in the application of deep learning in robotics. Acquiring real-world data requires considerable time and effort, yet it might still not capture the full range of potential environmental variations. The generation of new synthetic data based on existing training data has been enabled with the development of generative adversarial networks (GANs). In this paper, we introduce a training methodology based on GAN… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.