COLLECTIONS
This paper was selected as Featured
ARTICLES YOU MAY BE INTERESTED INThe ability to confine light at the nanoscale continues to excite the research community, with the ratio between quality factor Q and volume V, i.e., the Q/V ratio, being the key figure of merit. In order to achieve strong light-matter interaction, however, it is important to confine a lot of energy in the resonant cavity mode. Here, we demonstrate a novel cavity design that combines a photonic crystal nanobeam cavity with a plasmonic bowtie antenna. The nanobeam cavity is optimised for a good match with the antenna and provides a Q of 1700 and a transmission of 90%. Combined with the bowtie, the hybrid photonic-plasmonic cavity achieves a Q of 800 and a transmission of 20%, both of which remarkable achievements for a hybrid cavity. The ultra-high Q/V of the hybrid cavity is of order of 10 6 (λ/n) 3 , which is comparable to the state-of-the-art of photonic resonant cavities. Based on the high Q/V and the high transmission, we demonstrate the strong efficiency of the hybrid cavity as a nanotweezer for optical trapping. We show that a stable trapping condition can be achieved for a single 200 nm Au bead for a duration of several minutes (t trap > 5 min) and with very low optical power (P in = 190 µW).