ABSTRACT. Female P. americana, reared with males from the time of adult emergence, mated on the 4th–5th day after metamorphosis, produced the first ootheca on the 8th or 9th day, and then produced successive oothecae at intervals of 3.0 days, whereas, only 50% of virgin females had produced their first ootheca by the 28th day after adult emergence. Examination of the ovaries indicated that oocyte development is normal in virgins until shortly after the time when they first become receptive to males. When mating was not allowed there was a dramatic reduction in the rate of vitellogenic growth of the terminal batch of oocytes which persisted until mating was allowed, and was often accompanied by resorption of a percentage of the oocytes.
Short‐term, in vitro, radiochemical assay of juvenile hormone (JH III) biosynthesis by corpora allata (CA) showed that, in females reared with males, the cycles of ovarian development are accompanied by regular pulses of CA activity. There is a small, possibly preparatory peak of JH III biosynthesis before vitellogenesis of the first wave of oocytes, followed by a larger peak of JH III production during vitellogenesis of this batch of eggs and one peak of CA activity between ovulation of each subsequent wave of oocytes. Activities as low as 0.25 pmol C16JH/CA pair/h and as high as 48.38 pmol/CA pair/h were observed in CA from mated females after the onset of cyclic activity.
Stimuli received during mating are somehow responsible for the cyclic activity of the CA, for when females were subjected to enforced virginity the first small peak was normal but the second peak was not fully realized and there was then a gradual decline in CA activity until approximately 2 weeks post‐emergence. Thereafter the glands exhibited a more or less constant rate of JH biosynthesis (mean = 3.45 ± 0.32 pmol/CA pair/h.) When females were mated after 21 days of enforced virginity the activity of the CA was enhanced. By 48 h after mating the mean glandular activity was at least four times that found in virgins of the same age, and by 72 h rates as high as 40 pmol/CA pair/h were observed. This was followed by normal cyclic activity of the CA. The increase in rate of JH biosynthesis appears to result in a recommencement of oocyte development in these ‘delayed‐mated’ females.