A profound influence of water has previously been detected in the complexation of the enantiomers of methyl 2-chloropropanoate (MCP) and the chiral selector octakis(3-O-butanoyl-2,6-di-O-pentyl)-γ-cyclodextrin (Lipodex-E) in NMR and sensor experiments. We therefore investigated the retention behavior of MCP enantiomers on Lipodex-E by gas chromatography (GC) under hydrous conditions. Addition of water to the N2 carrier gas modestly reduced the retention factors k of the enantiomers, notably for the second eluted enantiomer (S)-MCP. This resulted in an overall decrease of enantioselectivity -ΔS,R (ΔG) in the presence of water. The effect was fully reversible. Consequently, for a conditioned column in the absence of residual water, the determined thermodynamic data, i.e. ΔS,R (ΔH) = -12.64 ± 0.08 kJ mol(-1) and ΔS,R (ΔS) = -28.18 ± 0.23 J K(-1) mol(-1), refer to a true 1:1 complexation process devoid of hydrophobic hydration.