Three new copoly(ether-amide)s based on polyether segments of different molecular weight (average molecular weight 400, 900 and 2000 g/mol) and polyamide segments obtained from 4,4'-diamine benzophenone (DBF) and isophthalic acid (ISO) are reported. The resulting new copoly(ether-amide)s have inherent viscosities ranging of 0.32 to 0.35 dL/g at concentration of 0.5 g/dL, and form dense membranes by solvent casting method. The gas transport properties of the new copoly(ether-amide) membranes for pure gases (He, CO 2 , O 2 , CH 4 , and N 2 ) are studied at different pressures (2.0, 5.0, 7.5, and 10.0 atm) and at different temperatures (35-75 °C). The soft segment of polyether allows an increase in gas permeability coefficients, mainly CO 2 , in comparison with the values reported for DBFISO aromatic polyamide. However, an increase in polyether segment length decreases the overall permeability coefficients, because the polyether shows a strong tendency to crystallize.