Permeability is one of the key factors that determine the fluids flow capacity and production potential of hydrate deposits. In this study, an experimental setup is developed to investigate the flow properties of the porous media, and the permeabilities to water are measured in the unconsolidated porous media with or without hydrate deposition in the pores. A specialized method of precisely controlling the amount of injected methane gas is employed to form methane hydrate in the core sample, and the hydrate formation process is described by the change characteristics of the gas and hydrate saturations. It is found that the residual gas plays an obstructive role in the water flow and it tends to slightly reduce the water permeability in the porous media, especially under high pressure conditions. After hydrate formation in the core sample, relatively steady flow state can be obtained under suitable water injection rate Q at which hydrate dissociation rate is very slow. The absolute permeability of the porous sample is reduced from 49.2 to 1.2 Darcies when the hydrate saturation increases from 0 to 9.3% in this study, indicating a strong dependence of k on the hydrate saturation.