Titanium alloys used in aerospace structures require joints of high integrity to meet the design requirements. Gas tungsten arc welding (GTAW), laser beam welding (LBW) and electron beam welding (EBW) are all processes capable of creating fusion welded joints. Gas tungsten arc welding offers the potential to achieve welds of equal quality to EBW or LBW at much lower capital costs; however, the application of GTAW involves gaining an understanding of the complex process characteristics. This paper reviews the process characteristics for GTAW titanium alloys and compares these characteristics with EBW and LBW titanium alloys. The characteristics of active flux tungsten inert gas welding and keyhole mode GTAW, two recent developments to GTAW, are considered, as is keyhole mode plasma arc welding. These variants are capable of greater penetration and, in some cases, faster processing speeds than conventional GTAW. Finally, the current knowledge of weld microstructural development in cast and wrought α + β titanium alloys and the mechanical performance of such welded joints are examined. Notably, conduction mode GTAWs are shown to have comparable mechanical properties with EBWs in relation to both cast and wrought base metals.