IntroductionThe oxidative stress associated with glucose variability might be responsible for neuronal damage while autonomic neuropathy (AN) has a detrimental effect on metabolism. The aim of the study was to find relationship between AN and GV in type 1 diabetic patients and to identify further factors that affect GV.Patients and methodsTwenty type 1 diabetic patients were involved (age: 39.5 ± 3.4 years, duration of diabetes: 17.5 ± 2.5 years; HbA1c: 8.1 ± 0.2%, mean ± SE). AN was assessed by the cardiovascular reflex tests. The interstitial glucose levels were determined following insertion of a subcutaneous electrode during the continuous glucose monitoring (CGM) method on six consecutive days. GV was characterized by calculation of four parameters.ResultsSD of interstitial glucose values correlated positively with the overall AN score and the degree of the orthostatic reduction of systolic blood pressure (AN-score-SD ρ = 0.47, p < 0.05; orthostasis-SD: ρ = 0.51, p < 0.05). Mean absolute glucose (MAG) correlated with three parameters of AN (AN-score-MAG: ρ = 0.62, p < 0.01; 30/15 ratio-MAG: ρ = −0.50, p < 0.05; orthostasis-MAG: ρ = 0.59, p < 0.01). The HbA1c also correlated with two parameters of GV (HbA1c-continuous overlapping net glycemic action: ρ = 0.56, p < 0.05; HbA1c-MAG: ρ = 0.45, p < 0.05). The frequency of hypoglycemia did not exhibit any correlation with measures of GV.ConclusionSeverity of glucose variability but not overall glucose load correlates with both parasympathetic and sympathetic dysfunctions in type 1 diabetes. Higher HbA1c is associated with more severe glucose variability. The observed correlation between increased glucose variability and the severity of AN necessitates the further exploration of this relationship.