Reciprocally connected GABAergic external globus pallidus (GPe) and glutamatergic subthalamic nucleus (STN) neurons form a key network within the basal ganglia. r In Parkinson's disease and its models, abnormal rates and patterns of GPe-STN network activity are linked to motor dysfunction. r Using cell class-specific optogenetic identification and inhibition during cortical slow-wave activity and activation, we report that, in dopamine-depleted mice, (1) D2 dopamine receptor expressing striatal projection neurons (D2-SPNs) discharge at higher rates, especially during cortical activation, (2) prototypic parvalbumin-expressing GPe neurons are excessively patterned by D2-SPNs even though their autonomous activity is upregulated, (3) despite being disinhibited, STN neurons are not hyperactive, and (4) STN activity opposes striatopallidal patterning. r These data argue that in parkinsonian mice abnormal, temporally offset prototypic GPe and STN neuron firing results in part from increased striatopallidal transmission and that compensatory plasticity limits STN hyperactivity and cortical entrainment.