The two-dimensional surface of the three-dimensional topological insulator is in the symplectic universality class and should exhibit perfect weak antilocalization reflected in positive weak-field magneto-resistance. Previous studies in topological insulator thin films suffer from high level of bulk n-type doping making quantitative analysis of weak antilocalization difficult. Here we measure the magneto-resistance of bulk-insulating Bi 2 Se 3 thin films as a function of film thickness and gate-tuned carrier density. For thick samples, the magnitude of weak antilocalization indicates two decoupled (top and bottom) symplectic surfaces. On reducing thickness, we observe first a crossover to a single symplectic channel, indicating coherent coupling of top and bottom surfaces via interlayer tunnelling, and second, a complete suppression of weak antilocalization. The first crossover is governed by the ratio of phase coherence time to the inter-surface tunnelling time, and the second crossover occurs when the hybridization gap becomes comparable to the disorder strength.