The development of synthetic particles that emulate real viruses in size, shape, and chemical composition is vital to the development of imprinted polymer-based sorbent materials (molecularly imprinted polymers, MIPs). In this study, we address surrogates for adenovirus type 5 (Adv 5) via the synthesis and subsequent modification of icosahedral gold nanoparticles (iAuNPs) decorated with the most abundant protein of the Adv 5 (i.e., hexon protein) at the surface. CTAB-capped iAuNPs with dimensions in the range of 40–90 nm were synthesized, and then CTAB was replaced by a variety of polyethylene glycols (PEGs) in order to introduce suitable functionalities serving as anchoring points for the attachment of the hexon protein. The latter was achieved by non-covalent linking of the protein to the iAuNP surface using a PEG without reactive termination (i.e., methoxy PEG thiol, mPEG-SH, Mn=800). Alternatively, covalent anchoring points were generated by modifying the iAuNPs with a bifunctional PEG (i.e., thiol PEG amine, SH-PEG-NH
2
) followed by the addition of glutaraldehyde. X-ray photoelectron spectroscopy (XPS) confirmed the formation of the anchoring points at the iAuNP surface. Next, the amino groups present in the amino acids of the hexon protein interacted with the glutaraldehyde. iAuNPs before and after PEGylation were characterized using dynamic light scattering (DLS), XPS, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV–Vis spectroscopy, confirming the CTAB–PEG exchange. Finally, the distinct red shift obtained in the UV–Vis spectra of the pegylated iAuNPs in the presence of the hexon protein, the increase in the hydrodynamic diameter, the change in the zeta potential, and the selective binding of the hexon-modified iAuNPs towards a hexon-imprinted polymer (HIP) confirmed success in both the covalent and non-covalent attachment at the iAuNP surface.
Graphical abstract
Supplementary Information
The online version contains supplementary material available at 10.1007/s00216-022-04368-x.