Particle production in strong electromagnetic fields is a recurring theme in solid state physics, heavy ion collisions, early universe cosmology and formal quantum field theory. In this paper we discuss the Dirac equation in a background of parallel electric and magnetic fields. We review the Schwinger particle production rate, clarify the emergence of the chiral anomaly equation and compute the induced current of charged fermions. We distinguish the contributions from nonperturbative particle production, from the running of the gauge coupling constant and from nonlinearities in the effective QED Lagrangian, and clarify how these contributions arise within a single framework. We apply these results to axion inflation. A Chern-Simons coupling between the pseudoscalar particle driving cosmic inflaton and an abelian gauge group induces a dual production of gauge fields and charged fermions. We show that the resulting scalar and gravitational wave power spectra strongly depend on the fermion mass.