1991
DOI: 10.1103/physrevb.44.4374
|View full text |Cite
|
Sign up to set email alerts
|

Gauge-invariant method for the ±Jspin-glass model

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

3
58
0

Year Published

1994
1994
2007
2007

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 35 publications
(61 citation statements)
references
References 35 publications
3
58
0
Order By: Relevance
“…While we have not studied these questions in detail, there are certainly situations where this does indeed happen. Thus, in the particular fermionic ImRH representation 42 of the two-dimensional random bond Ising model, our preliminary results suggest that the density of states is power-law vanishing to the left ͑the lessdisordered side͒ of the Nishimori line and power-law diverging to the right ͑this particular example was suggested to us by Nick Read and the corresponding result proved for a onedimensional toy model in Ref. 43͒.…”
Section: Discussionmentioning
confidence: 87%
“…While we have not studied these questions in detail, there are certainly situations where this does indeed happen. Thus, in the particular fermionic ImRH representation 42 of the two-dimensional random bond Ising model, our preliminary results suggest that the density of states is power-law vanishing to the left ͑the lessdisordered side͒ of the Nishimori line and power-law diverging to the right ͑this particular example was suggested to us by Nick Read and the corresponding result proved for a onedimensional toy model in Ref. 43͒.…”
Section: Discussionmentioning
confidence: 87%
“…From the log-log plots in Figs. 2(a) and 3(a), we find that b is proportional to L 1.78 (2) and L 1.81(4) , respectively, while from Figs. 8(a) and 9(a), the scaling of −A is essentially indistinguishable from L 2 .…”
Section: Ground State Propertiesmentioning
confidence: 87%
“…In recent years it has become possible to compute the free energy of the two-dimensional (2D) Ising spin glass with ±J bonds on L × L lattices with L of 100 or more. 2,3,4,5,6,7 From these calculations on large lattices we have learned that extrapolations of data from lattices with L < 30 are often misleading. 8,9,10,11,12 A better understanding of why this happens is clearly desirable.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…A large class of models possess a "Nishimori line" in their phase diagram, on which the internal energy is analytic [2], and the correlation functions of the Ising spins obey certain identities [2,3]. In two dimensions, the Ising model can be represented as a noninteracting fermion problem, even when the bonds are random [4]. The problem then reduces to something similar to a two-dimensional (2D) tight-binding Hamiltonian with quenched disorder.…”
Section: Introductionmentioning
confidence: 99%