Lattice gauge theory should be able to address significant new scientific questions when implemented on quantum computers. In practice, error-mitigation techniques have already allowed encouraging progress on small lattices. In this work we focus on a truncated version of SU(2) gauge theory, which is a familiar non-Abelian step toward quantum chromodynamics. First, we demonstrate effective error mitigation for imaginary time evolution on a lattice having two square plaquettes, obtaining the ground state using an IBM quantum computer and observing that this would have been impossible without error mitigation. Then we propose the triamond lattice as an expedient approach to lattice gauge theories in three spatial dimensions and we derive the Hamiltonian. Finally, error-mitigated imaginary time evolution is applied to the three-dimensional triamond unit cell, and its ground state is obtained from an IBM quantum computer. Future work will want to relax the truncation on the gauge fields, and the triamond lattice is increasingly valuable for such studies.