A classical model of the triatomic D₃⁺ molecule subjected to an intense, few-cycle laser pulse is introduced. The model is capable of describing the laser-induced correlated motion of both electrons and nuclei in three dimensions, and allows us to follow the motion of the two electrons and three deuterons from the initial field-free state, during the pulse, and until the bond breaking into the final fragments. By averaging over many trajectories, we calculate the relative yields of the ionization and dissociation channels, as well as the kinetic energy release (KER) from the fragment ions. A comparison with recent experimental KER spectra shows good qualitative agreement. In addition, we find a pathway in which an emitted electron recombines into a high-lying Rydberg state, resulting in D + D⁺ + D⁺ fragments with the same KER as in the D⁺ + D⁺ + D⁺ channel.