There is a critical need for a better multiscale and multifactorial understanding of neurological disorders, covering from genes to neuroimaging to clinical factors and treatments effects. Here we present NeuroPM-box, a cross-platform, user-friendly and open-access software for characterizing multiscale and multifactorial brain pathological mechanisms and identifying individual therapeutic needs. The implemented methods have been extensively tested and validated in the neurodegenerative context, but there is not restriction in the kind of disorders that can be analyzed. By using advanced analytic modeling of molecular, neuroimaging and/or cognitive/behavioral data, this framework allows multiple applications, including characterization of: (i) the series of sequential states (e.g. transcriptomic, imaging or clinical alterations) covering decades of disease progression, (ii) intra-brain spreading of pathological factors (e.g. amyloid and tau misfolded proteins), (iii) synergistic interactions between multiple brain biological factors (e.g. direct tau effects on vascular and structural properties), and (iv) biologically-defined patients stratification based on therapeutic needs (i.e. optimum treatments for each patient). All models outputs are biologically interpretable. A 4D-viewer allows visualization of spatiotemporal brain (dis)organization. Originally implemented in MATLAB, NeuroPM-box is compiled as standalone application for Windows, Linux and Mac environments: neuropm-lab.com/software. In a regular workstation, it can analyze over 150 subjects per day, reducing the need for using clusters or High-Performance Computing (HPC) for large-scale datasets. This open-access tool for academic researchers may significantly contribute to a better understanding of complex brain processes and to accelerating the implementation of Precision Medicine (PM) in neurology.