2023
DOI: 10.3390/math11224695
|View full text |Cite
|
Sign up to set email alerts
|

Gaussian Process-Based Transfer Kernel Learning for Unsupervised Domain Adaptation

Pengfei Ge,
Yesen Sun

Abstract: The discriminability and transferability of models are two important factors for the success of domain adaptation methods. Recently, some domain adaptation methods have improved models by adding a discriminant information extraction module. However, these methods need to carefully balance the discriminability and transferability of a model. To address this problem, we propose a new deep domain adaptation method, Gaussian Process-based Transfer Kernel Learning (GPTKL), which can perform domain knowledge transfe… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 41 publications
0
0
0
Order By: Relevance