2011
DOI: 10.1007/s00477-011-0498-0
|View full text |Cite
|
Sign up to set email alerts
|

Gaussian process classification: singly versus doubly stochastic models, and new computational schemes

Abstract: The aim of this paper is to compare four different methods for binary classification with an underlying Gaussian process with respect to theoretical consistency and practical performance. Two of the inference schemes, namely classical indicator kriging and simplicial indicator kriging, are analytically tractable and fast. However, these methods rely on simplifying assumptions which are inappropriate for categorical class labels. A consistent and previously described model extension involves a doubly stochastic… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 27 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?