2024
DOI: 10.3390/asi7060128
|View full text |Cite
|
Sign up to set email alerts
|

GCBAM-UNet: Sun Glare Segmentation Using Convolutional Block Attention Module

Nabila Zrira,
Anwar Jimi,
Mario Di Nardo
et al.

Abstract: Sun glare poses a significant challenge in Advanced Driver Assistance Systems (ADAS) due to its potential to obscure important visual information, reducing accuracy in detecting road signs, obstacles, and lane markings. Effective sun glare mitigation and segmentation are crucial for enhancing the reliability and safety of ADAS. In this paper, we propose a new approach called “GCBAM-UNet” for sun glare segmentation using deep learning. We employ a pre-trained U-Net model VGG19-UNet with weights initialized from… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?