In this paper we study stable finiteness of ample groupoid algebras with applications to inverse semigroup algebras and Leavitt path algebras, recovering old results and proving some new ones. In addition, we develop a theory of (faithful) traces on ample groupoid algebras, mimicking the C * -algebra theory but taking advantage of the fact that our functions are simple and so do not have integrability issues, even in the non-Hausdorff setting. The theory of traces is closely connected with the theory of invariant means on Boolean inverse semigroups. We include an appendix on stable finiteness of more general semigroup algebras, improving on an earlier result of Munn, which is independent of the rest of the paper.