Hypersensitive response (HR) is a form of programmed cell death (PCD) and the primary immune response that prevents pathogen invasion in plants. Here, we show that a microRNAmiR164 and its target gene NAC4 (At5g07680), encoding a NAC transcription factor, play essential roles in the regulation of HR PCD in Arabidopsis thaliana. Cell death symptoms were noticeably enhanced in NAC4-overexpressing (35S:NAC4) and mir164 mutant plants in response to avirulent bacterial pathogens. NAC4 expression was induced by pathogen infection and negatively regulated by miR164 expression. NAC4-binding DNA sequences were determined by in vitro binding site selection using random oligonucleotide sequences. Microarray, chromatin immunoprecipitation and quantitative real time polymerase chain reaction (qRT-PCR) analyses, followed by cell death assays in protoplasts, led to the identification of NAC4 target genes LURP1, WRKY40 and WRKY54, which act as negative regulators of cell death. Our results suggest that NAC4 promotes hypersensitive cell death by suppressing its target genes and this immune process is fine-tuned by the negative action of miR164.