Purpose
To develop a novel fluorine-18 (18F)-labeled arginine–glycine–aspartic acid (RGD)-coupled ultra-small iron oxide nanoparticle (USPIO) (hereafter, referred to as 18F-RGD@USPIO) and conduct an in-depth investigation to monitor the anti-angiogenic therapeutic effects by using a novel dual-modality PET/MRI probe.
Methods
The RGD peptide and 18F were coupled onto USPIO by click chemistry. In vitro experiments including determination of stability, cytotoxicity, cell binding of the obtained 18F-RGD@USPIO were carried out, and the targeting kinetics and bio-distribution were tested on an MDA-MB-231 tumor model. A total of 20 (n = 10 per group) MDA-MB-231 xenograft-bearing mice were treated with bevacizumab or placebo (intraperitoneal injections of bevacizumab or a volume-equivalent placebo solution at the dose of 5 mg/kg for consecutive 7 days, respectively), and underwent PET/CT and MRI examinations with 18F-RGD@USPIO before and after treatment. Imaging findings were validated by histological analysis with regard to β3-integrin expression (CD61 expression), microvascular density (CD31 expression), and proliferation (Ki-67 expression).
Results
Excellent stability, low toxicity, and good specificity to endothelial of 18F-RGD@USPIO were confirmed. The best time point for MRI scan was 6 h post-injection. No intergroup differences were observed in tumor volume development between baseline and day 7. However, 18F-RGD@USPIO binding was significantly reduced after bevacizumab treatment compared with placebo, both on MRI (P < 0.001) and PET/CT (P = 0.002). Significantly lower microvascular density, tumor cell proliferation, and integrin β3 expression were noted in the bevacizumab therapy group than the placebo group, which were consistent with the imaging results.
Conclusion
PET/MRI with the dual-modality nanoprobe, 18F-RGD@USPIO, can be implemented as a noninvasive approach to monitor the therapeutic effects of anti-angiogenesis in breast cancer model in vivo.