The verification of the correctness, adaptability, and robustness of software systems in modern precision measurement instruments is of great significance. Due to the difficulty in processing and calibrating high-precision fine-pitch gear artefacts, the function verification and accuracy calibration of vision measurement instruments for the fine-pitch gear have become a challenge. The calibration method of the gear vision measurement system based on the virtual gear artefact involves two steps, namely obtaining and applying the virtual artefact. The obtained virtual gear artefact has the same geometric features, error features, and image edge features as the real artefact. The calibration method based on the virtual artefact can complete the correctness verification of the gear vision measurement system, and is superior to the traditional methods in adaptability verification, robustness verification, and fault analysis. In a test, the characteristic error of the virtual gear artefact could be reproduced with the original shape in the evaluation results of the computer vision gear measurement (CVGM) system, while the reproduction error did not exceed 1.9 μm. This can meet the requirements of the verification of the gear vision measurement software. The application of the virtual gear artefact can significantly improve the accuracy and robustness of the computer vision measuring instrument of the fine-pitch gear.