This paper describes the use of an optical instrument, the Fabry–Perot interferometer, adapted to measure very low pressures. The interferometer consists of two high-reflectance flat mirrors placed one in front of another. In addition, a metallic chamber contains air or a gas. In one of the faces of the chamber, a flexible thin silicone membrane is attached and, over it, one of the mirrors is glued. The other mirror rests in a fixed mechanical mounting. Light crosses both mirrors and, when it leaves them, forms an interference pattern consisting of concentric circular fringes. When the pressure is increased/decreased within the chamber, a displacement of the fringes is observed due to the movement of the glued mirror. By measuring the fringe displacement and knowing the pressure, a calibration plot can be made. Minimum pressure measurements of about tens of Pascals were achieved.