Starch properties during processing are major determinants of starch employment for food development. The gelatinization, pasting, and retrogradation of starch can be modified by the addition of galactomannans, which can improve rheological, textural, and nutritional properties. Rheology is an important key to obtain information about thermal transitions of starch and controlling characteristics required in food applications and to enhance understanding of the effect of starch-galactomannans systems and starch properties. This chapter provides information on starch transitions under heating and after cooling, including a definition of the process, molecular mechanisms, and rheological methods and its modification using starch-galactomannans mixtures and explains interactions throughout several investigations. The chapter also discusses how the rheological properties can affect the rate of the enzyme digestibility of starch on in vitro measurements and presents the starch-galactomannan systems as an alternative that can be used in structured foods as functional ingredients.Keywords: starch, galactomannans, rheology, structured food
IntroductionStarch is one of the most extensively used and studied biopolymers because of its low cost, accessibility, and ability to provide a wide range of functional properties to food systems. Time-effective structural changes (gel formation processes, retrogradation, and syneresis) © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.hamper the control of rheological behavior. The retrogradation of starch refers to the process in which disaggregated amylose and amylopectin chains in a gelatinized starch paste reassociate to form more ordered structures [1]. The aggregation and recrystallization of starch molecules are important processes to manage, because these factors contribute to the control of textural properties of starch-based products.Since native starch pastes and gels often exhibit low resistance to processing conditions, the native starches are replaced by chemically modified starches in food products or mixed with other hydrocolloids. It is well known in the food industry that nonstarch hydrocolloids have many functions, such as improving texture and moisture retention, extending the shelf life of the product, and controlling rheological properties [2,3]. The control of the rheological properties of starch is significant in order to regulate product processes and to optimize its applicability in food products. Researchers have studied the effect of hydrocolloids on the rheological properties of starches and found that viscosity, the retrogradation of starch dispersions, and syneresis of starch gels are influenced by the addition of hydrocolloids [4][5][6].Galactomannans are widely used in the industry due to their function...