Blockchain is a decentralized distributed ledger technology. The public chain represented by Bitcoin and Ethereum only realizes the limited anonymity of user identity, and the transaction amount is open to the whole network, resulting in user privacy leakage. Based on the existing anonymous technology, the concealment of the sender, receiver, amount of the transaction, and does not disclose any information, which makes the supervision difficult. Therefore, the design of blockchain scheme with privacy protection and supervision functions is of great significance. In this paper, a blockchain transaction model with both privacy and supervision function is proposed. It uses probability encryption to realize the hiding of the true identity of the blockchain transaction, and uses the commitment scheme and zero-knowledge proof technology to realize the privacy protection and guarantee legitimacy verification of the transaction. With the use of encryption technology, the regulators can supervise blockchain transactions without storing the users' information, which greatly reduces the pressure on storage, computing and key management. In addition, it does not rely on specific consensus mechanism and can be used as an independent module. The security performance analysis shows that the proposed scheme has great practicability and has potential application in many fields.