To investigate the effects of direct peritoneal resuscitation with pyruvate-peritoneal dialysis solution (Pyr-PDS) of different concentrations combined with intravenous resuscitation on acid–base imbalance and intestinal ischemia reperfusion injury in rats with hemorrhagic shock. Sixty rats were randomly assigned to group SHAM, group intravenous resuscitation, and four direct peritoneal resuscitation groups combined with intravenous resuscitation: group NS, LA, PY1, and PY2, that is, normal saline, lactate-PDS (Lac-PDS), lower concentration Pyr-PDS (Pyr-PDS1), and higher concentration Pyr-PDS (Pyr-PDS2), respectively. Two hours after hemorrhagic shock and resuscitation, the pH, oxygen partial pressure, carbon dioxide partial pressure (PCO2), base excess, and bicarbonate ion concentration (HCO3−) of the arterial blood were measured. The intestinal mucosal damage index and intercellular adhesion molecule 1 (ICAM-1), tumor necrosis factor-α, interleukin-6, zonula occludens-1, claudin-1, and occludin levels in intestinal issues were detected. Two hours after resuscitation, group PY2 had higher mean arterial pressure, pH, oxygen partial pressure, and base excess and lower PCO2 of arterial blood than group PY1 ( P < 0.05). Tumor necrosis factor-α and interleukin-6 levels in group PY2 were significantly lower than those in group PY1 ( P < 0.05). Zonula occludens-1, claudin-1, and occludin expression levels were significantly higher in group PY2 than in group PY1 ( P < 0.05). Direct peritoneal resuscitation with Pyr-PDS2 combined with intravenous resuscitation enhanced the hemodynamics, improved the acid–base balance, and alleviated intestinal ischemia reperfusion injury from hemorrhagic shock and resuscitation in rats. The mechanisms might include correction of acidosis, inhibition of inflammatory response, enhancement of systemic immune status, regulation of intestinal epithelial permeability, and maintenance of intestinal mucosal barrier function. Impact statement Hemorrhagic shock is a life-threatening condition after trauma or during surgery. Acid–base imbalance and intestinal ischemia reperfusion injury are two significant causes in the pathogenetic process and multiple organ dysfunction. As a result, it is urgent and necessary to find an effective method of resuscitation in order to reverse the acid–base imbalance and protect organ function. This current study confirmed the protection against hypoxic acidosis and intestinal ischemia reperfusion injury by peritoneal resuscitation with pyruvate combined with intravenous resuscitation in rats with hemorrhagic shock. And the peritoneal dialysis solution with pyruvate of high concentration plays a crucial role in the process. It provided a new idea and possible direction of fluid resuscitation for alleviating organ injuries, protecting organ functions, and improving clinical prognosis after hemorrhagic shock and resuscitation.