Parasites have been proposed to be fundamental in the evolution of mate choice because differential mating on the basis of heritable disease resistance is expected to lead to progeny with a better genomeenvironment match than random mating. However, direct empirical data in support of this hypothesis are often lacking, and the relative influences of current and potential infection status (i.e. resistance genotype), and of mate choice versus mate conflict, remain largely unknown. We demonstrate experimentally, using simultaneous hermaphroditic snails (Biomphalaria glabrata) artificially selected for resistance or susceptibility to Schistosoma mansoni infection, that mate choice is influenced by a combination of current and potential parasitic infection status. As predicted by game-theory models, we also found a picture of conflict and cooperation: resistant and susceptible genotypes copulated in either gender and reciprocated (i.e. switched gender) equally when faced with an uninfected partner, but, by contrast, resistant snails actively refused to copulate as females with an infected partner. Such recognition and discrimination has implications for the maintenance of sex and the evolution of recognition systems.